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Carbon Nanotube Fibers Are Compatible With
Mammalian Cells and Neurons

Robert A. Dubin, Gerardo C. Callegari, Joachim Kohn, and Alexander V. Neimark∗

Abstract—We demonstrate the biocompatibility of carbon nan-
otube fibers (CNFs) fabricated from single-wall carbon nanotubes.
Produced by a particle-coagulation spinning process, CNFs are
“hair-like” conductive microwires, which uniquely combine prop-
erties of porous nanostructured scaffolds, high-area electrodes, and
permeable microfluidic conduits. We report that CNFs are nontoxic
and support the attachment, spreading, and growth of mammalian
cells and the extension of processes from neurons in vitro. Our find-
ings suggest that CNF may be employed for an electrical interfacing
of nerve cells and external devices.

Index Terms—Biocompatibility, carbon nanotubes, cell adhe-
sion, neurons.

I. INTRODUCTION

CARBON nanotubes hold great promise for novel biomedi-
cal nanotechnologies [1]–[3]. High strength and electrical

conductivity, flexibility, and potential for functionalization have
stimulated significant interest in applying carbon nanotubes to
the development of superior neural prosthetic implants [4], [5].
In particular, neurite extension and electrical activity are sup-
ported when neurons were grown on carbon nanotubes deposited
on planar substrates [6]–[15]. In this paper, we demonstrate
the biocompatibility of carbon nanotube fibers (CNFs) fabri-
cated from single-wall carbon nanotubes (SWNTs). Produced
by a particle-coagulation spinning (PCS) process [16], [17],
CNFs are “hair-like” conductive and flexible microwires, which
uniquely combine properties of porous nanostructured scaffolds,
high-area electrodes, and permeable micro-fluidic conduits. The
range of potential applications of the CNF extends from super-
capacitors, electrochemical transducers, artificial muscles, and
microwires, to conduits in micro- and nanofluidics devices and
media packaging material [16], [18]–[23] . We report that CNFs
are nontoxic and support the attachment, spreading, and growth
of mammalian cells and the extension of processes from neurons
in vitro (Table I).

CNF samples from 30 to 100 µm in diameter and up to 30 cm
long in the form of threads and ribbons were produced by the
PCS process [16], [18], modified as described in [17]. Fibers
were spun from 0.6 wt.% dispersion of SWNTs (Nanoledge) in
an aqueous solution of 1.2% of sodium dodecyl sulfate (SDS)
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TABLE I
CNF IS NOT TOXIC TO MAMMALIAN CELLS

Fig. 1. Hierarchical pore structure morphology of CNF threads. (A) Tip of a
CNF thread of about 50 µm in diameter produced with PVA solution. (B) Highly
porous nanofelt formed of SWCN bundles of 5–30 nm in diameter. (C) Porous
mesh structure on the external surface is composed of polymer-bound SWCN
bundles. (D) External surface of fibers produced with PVA/ethanol solution is
less corrugated.

(Aldrich) prepared in a horn sonicator. The SWNT dispersion
was injected through a needle (ID = 1 mm) into a coagula-
tion bath rotating at the rate of 33 r/min. The coagulation bath
contained an aqueous solution with 5% of poly(vinyl alcohol)
of the average molecular weight of 67 000 Da (Fluka). The
ribbons were rinsed for 3 h prior to extraction. The fiber mor-
phology was controlled by adding alcohol into the coagulation
and extraction solutions [17]. The samples of the CNF em-
ployed in this paper were shown to be electro-conductive with
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Fig. 2. Cell attachment, growth, and spreading are compatible with CNF. (A) KB cells growing along the shaft of CNF. (B) Excessive KB cell growth on the region
of freshly exposed nanofelt at CNF tip. (C) Rat GFP-expressing, dermal fibroblasts grown on the CNF, and imaged by fluorescent microscopy. (D) NIH3T3 cells
on CNF and stained with FITC-phalloidin. (E) Confocal micrograph of Saos-2 osteoblasts expressing GFP-Actin on CNF. (F) SEM images of rat, GFP-expressing,
dermal fibroblasts grown on CNF preadsorbed with fibronectin. Cells were grown on CNF for 6–9 days prior to imaging.

Fig. 3. Neurite extensions on CNF. (A) and (B) Fluorescent images of rat hippocampal neural extensions on CNF following immunocytochemical staining for
neural-specific β-tubulin. The edge of CNF is clearly visible. (C) Nerve growth factor-induced processes extending from PC12 cells grown on CNF and stained
with Alexa Fluor 594-conjugated wheat germ agglutinin.

the specific conductivity of about 2 × 103 S/m, which cor-
responded to the fiber resistance per unit length of the order
of 1–2 kΩ/cm. The fact that the fiber is conductive confirms
that the nanotubes are not buried in the polymer. The fibers
exhibited robust mechanical properties with Young’s modules
of the order of 1–3 GPa that is comparable to human hair.
The permeability of the CNF was demonstrated in our earlier
work [24].

Mechanical, transport, and adhesion properties of the CNF
are determined by their hierarchical pore structure [24]. As
presented by a series of field emission SEM images (FESEM
S-4500, Hitachi) in Fig. 1, CNFs of round cylindrical shape
[Fig. 1(A)] are composed of SWNT bundles of diameter 5–
30 nm, which form a highly disordered nanofelt [Fig. 1(B)].
The fiber external surface represents a porous mesh of SWNT
bundles bonded by polymer [Fig. 1(C)]. It is corrugated with
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pronounced longitudinal grooves. The specific surface area of
CNF samples was 150–250 m2 /g, as measured by the nitro-
gen adsorption technique [24], corresponding to 3–10 nm pores
within the nanofelt. The CNF porosity and surface morphology
can be controlled by varying the composition of coagulation
and extraction solutions [17]. For example, CNF samples spun
into a coagulation solution with ethanol had a less corrugated
surface [Fig. 1(D)] than those produced without alcohol addi-
tives [Fig. 1(A)]. Details of the CNT hierarchical structure were
discussed elsewhere [17], [24].

II. RESULTS

We have characterized the cellular response to the CNF
in vitro. Details of experimental protocols and microscopy tech-
niques are given in supplementary information.1 Initial exper-
iments demonstrated the absence from CNF preparations of
leachable, cytotoxic compounds (surfactants and additives) used
in the CNF fabrication. Approximately 10 000 L929 cells were
incubated in the presence of a 5 or 8 mm fragment of CNF
thread in wells of a 96-well tissue culture plate. After 14–18 h,
the extent of acute cytotoxicity was quantified as the concentra-
tion of cytosolic glucose-6-phosphate dehydrogenase released
into the growth medium. Results from two independent exper-
iments using CNF from a single preparation reveal that the
short-term exposure to CNF elicited no significant, acute, and
cytotoxic effect. Cytotoxic studies performed with two addi-
tional, independent CNF preparations showed similar results
(data not shown).

Long-term studies demonstrated the compatibility of the CNF
with cell attachment and growth. By 24 h, immortal KB and
NIH3T3 cells had attached to the CNF. Microscopic exami-
nation over the course of one week revealed that these cells
were proliferating [Fig. 2(A)]. Interestingly, significant cell
growth was observed on surfaces of freshly exposed nanofelt
[Fig. 2(B)]. An explanation for this observation remains un-
clear; however, it is likely that cell adhesion was enhanced due
to the high area of nanotube bundles on the fiber tip [Fig. 1(B)].
An on-edge imaging was inadequate to demonstrate cell spread-
ing in living cells. To overcome this problem, we took advantage
of the natural fluorescence of primary, neonatal, rat dermal fi-
broblasts engineered to express green fluorescent protein (GFP).
As shown in [Fig. 2(C)], these cells exhibited clear evidence of
spreading over the CNF surface. By visualizing cytoskeleton
components of cells on the CNF, the ability of additional cell
types to spread over this material was confirmed. Organized
actin stress fibers were observed in both NIH3T3 and Saos-2
cells growing on the CNF [Fig. 2(D) and (E)]. Upon a detailed
examination of cells spread over the CNF by SEM, the cells
and the elementary filaments of the CNF can be distinguished.
Intimate association between the two is observed [Fig. 2(F)].
Together, these results demonstrate the CNF compatibility with
the attachment, growth, and spreading of immortal and primary
cells.

1Supplementary Information "Details of experimental studies and
microscopy of cell culture" can be viewed and downloaded at
http://sol.rutgers.edu/˜aneimark/PDFs/ Dubin Et Al IEEE NanoBio 2008 SI.pdf.

To determine whether SWNT organized as CNF are compat-
ible with neurons, primary, rat hippocampal neural cells were
grown on the CNF ribbon that had been preadsorbed with poly-
D-lysine and laminin. After one week of growth, preparations
were fixed and immunostained to detect neuronal class III β-
tubulin, a neural-specific marker; it is worth noting that this
anti-class III β-tubulin antibody does not cross-react with β-
tubulin expressed in glial cells. Cells plated on tissue culture
plastic were organized as aggregations of four to eight cell bod-
ies from which numerous processes extended (data not shown).
By contrast, no cell bodies were observed on the CNF. However,
well-formed, branching neurites extended onto the CNF mate-
rial at its edges [Fig. 3(A) and (B)]. This observation suggests
that cell bodies on an adjacent tissue culture plastic extended
processes onto the CNF material. Similar results were observed
for rat PC12 cells, a clonal cell line exhibiting features of sym-
pathetic neurons that include neurite outgrowth in response to
nerve growth factor (NGF) [25]. Following one week of growth
on the collagen-coated CNF and an additional week exposed
to NGF, living PC12 cells were imaged immediately, following
brief incubation with the vital stain Alexa Fluor 594-conjugated
wheat germ agglutinin. In this case, PC12 cell bodies and ex-
tended neurite-like processes were observed on the CNF mate-
rial [Fig. 3(C)]. Together, these results clearly demonstrate that
the CNF is permissive to the neural cell extension.

III. CONCLUSION

In conclusion, electrical conductivity and cell compatibility
suggest that the CNF may be a suitable substrate for electrically
conductive tissue, including neurons. High surface area of the
CNF may facilitate enhanced adhesion with cells and neurites.
The possibility for covalent modification of the CNF offers hope
that CNF electrodes may be fabricated so as to ameliorate the
reactive gliosis that is associated with current neural electrode
designs [26]. CNF may also serve as porous permeable conduits
for drug, nutrients, and growth factors delivery to cells. The
“one-dimensional” hair-like geometry of the CNF may offer
novel opportunities, compared to carbon nanotubes deposited
on planar substrates [8]–[12], [14], for the design of implantable
electrodes and microwires connecting neural tissue with external
devices needed for improving sensory and stimulatory prosthetic
devices for spinal cord injuries and other diseases of the nervous
system.
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